Home / Resources / Articles / Transplanted Pancreas Tissue May Lead to Better Glucose Control

Transplanted Pancreas Tissue May Lead to Better Glucose Control

Aug 23, 2012
Israeli researchers have developed tissue from the islets of Langerhans that may help insulin-producing cells survive longer, and generate more insulin and other necessary hormones….

The study also revealed that transplanting the engineered tissue helped normalize cellular function and lower glucose levels in mice with diabetes.

With autoimmune type I diabetes requiring potentially injurious insulin injections several times a day and type II diabetes showing a growing role for insulin-producing pancreatic islets in disease progression, researchers around the world are searching for better ways to cope.

New animal research at the Technion-Israel Institute of Technology in Haifa and Ben-Gurion University of the Negev in Beersheba offer the hope that one day, transplants of tissue from the pancreas could lead to better glucose control for diabetics.

Prof. Shulamit Levenberg of the Technion, who has spent many years trying to create replacement human organs by building them up on a "scaffold," has created tissue from the insulin-producing islets of Langerhans in the pancreas surrounded by a three-dimensional network of blood vessels.

The tissue she and her team created has significant advantages over traditional transplant material that has been harvested from healthy pancreatic tissue.

The insulin-producing cells survive longer in the engineered tissue, and produce more insulin and other essential hormones. When they transplanted the tissue into diabetic mice, the cells began functioning well enough to lower blood sugar levels in the mice.

Transplantation of islets – the pancreatic tissue that contains hormone-producing cells – is one therapy considered for people with type 1 diabetes, who produce little or no insulin because their islets are destroyed by their own immune systems.

But as with many tissue and organ transplants, donors are scarce, and there is a strong possibility that the transplantation will fail.

The well-developed blood vessel network built into the engineered tissue is key to its success, the researchers concluded. The blood vessels encourage cell-to-cell communication, by secreting growth hormones and other molecules that significantly improve the odds that transplanted tissue will survive and function normally.

Levenberg and colleagues wrote, the findings confirm that the blood vessel network "provides key survival signals to pancreatic, hormone-producing cells even in the absence of blood flow. One reason transplants fail, is that the islets are usually transplanted without any accompanying blood vessels. Until the islets begin to connect with a person’s own vascular system, they are vulnerable to oxygen and nutrient starvation."

The 3-D system developed by the researchers tackled this challenge by bringing together several cell types to form a new transplantable tissue. Using a porous plastic material as the scaffold for the new tissue, the scientists seeded the scaffold with mouse islets, tiny blood vessel cells taken from human umbilical veins, and human foreskin cells that encouraged the blood vessels to develop a tube-like structure.

Islets grown in these rich, multicellular environments lived three times as long on average as islets grown by themselves, Levenberg and colleagues found.

The technology "is still far from tests in humans," Levenberg said, but she noted that she and her colleagues are beginning to test the 3-D tissue scaffolds using human instead of mouse islets.

"The advantages provided by this type of environment are really profound," said Xunrong Luo, an islet transplantation specialist at the Northwestern University Feinberg School of Medicine in Chicago. She noted that the number of islets used to lower blood sugar levels in the mice was nearly half the number used in a typical islet transplant.

According to the Northwestern researcher, the 3-D model demonstrated in the study "will have important and rapid clinical implications" if the results can be replicated with human cells. "This model system also provides a good platform to study the details and mechanisms that underlie successful transplantation."

PLOS One, August 2012